\(\int \frac {a+b \log (c x^n)}{x^3 \sqrt {d+e x}} \, dx\) [150]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 304 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=-\frac {b n \sqrt {d+e x}}{4 d x^2}+\frac {5 b e n \sqrt {d+e x}}{8 d^2 x}+\frac {7 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{8 d^{5/2}}+\frac {3 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2}{4 d^{5/2}}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-\frac {3 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{2 d^{5/2}}-\frac {3 b e^2 n \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{4 d^{5/2}} \]

[Out]

7/8*b*e^2*n*arctanh((e*x+d)^(1/2)/d^(1/2))/d^(5/2)+3/4*b*e^2*n*arctanh((e*x+d)^(1/2)/d^(1/2))^2/d^(5/2)-3/4*e^
2*arctanh((e*x+d)^(1/2)/d^(1/2))*(a+b*ln(c*x^n))/d^(5/2)-3/2*b*e^2*n*arctanh((e*x+d)^(1/2)/d^(1/2))*ln(2*d^(1/
2)/(d^(1/2)-(e*x+d)^(1/2)))/d^(5/2)-3/4*b*e^2*n*polylog(2,1-2*d^(1/2)/(d^(1/2)-(e*x+d)^(1/2)))/d^(5/2)-1/4*b*n
*(e*x+d)^(1/2)/d/x^2+5/8*b*e*n*(e*x+d)^(1/2)/d^2/x-1/2*(a+b*ln(c*x^n))*(e*x+d)^(1/2)/d/x^2+3/4*e*(a+b*ln(c*x^n
))*(e*x+d)^(1/2)/d^2/x

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {44, 65, 214, 2392, 12, 14, 43, 6131, 6055, 2449, 2352} \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=-\frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2}{4 d^{5/2}}+\frac {7 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{8 d^{5/2}}-\frac {3 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{2 d^{5/2}}-\frac {3 b e^2 n \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{4 d^{5/2}}+\frac {5 b e n \sqrt {d+e x}}{8 d^2 x}-\frac {b n \sqrt {d+e x}}{4 d x^2} \]

[In]

Int[(a + b*Log[c*x^n])/(x^3*Sqrt[d + e*x]),x]

[Out]

-1/4*(b*n*Sqrt[d + e*x])/(d*x^2) + (5*b*e*n*Sqrt[d + e*x])/(8*d^2*x) + (7*b*e^2*n*ArcTanh[Sqrt[d + e*x]/Sqrt[d
]])/(8*d^(5/2)) + (3*b*e^2*n*ArcTanh[Sqrt[d + e*x]/Sqrt[d]]^2)/(4*d^(5/2)) - (Sqrt[d + e*x]*(a + b*Log[c*x^n])
)/(2*d*x^2) + (3*e*Sqrt[d + e*x]*(a + b*Log[c*x^n]))/(4*d^2*x) - (3*e^2*ArcTanh[Sqrt[d + e*x]/Sqrt[d]]*(a + b*
Log[c*x^n]))/(4*d^(5/2)) - (3*b*e^2*n*ArcTanh[Sqrt[d + e*x]/Sqrt[d]]*Log[(2*Sqrt[d])/(Sqrt[d] - Sqrt[d + e*x])
])/(2*d^(5/2)) - (3*b*e^2*n*PolyLog[2, 1 - (2*Sqrt[d])/(Sqrt[d] - Sqrt[d + e*x])])/(4*d^(5/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2392

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[SimplifyIntegrand[u/x,
 x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2]) || InverseFunctionFreeQ[u, x]] /
; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 6055

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c^
2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6131

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-(b n) \int \frac {\sqrt {d} \sqrt {d+e x} (-2 d+3 e x)-3 e^2 x^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{4 d^{5/2} x^3} \, dx \\ & = -\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-\frac {(b n) \int \frac {\sqrt {d} \sqrt {d+e x} (-2 d+3 e x)-3 e^2 x^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{x^3} \, dx}{4 d^{5/2}} \\ & = -\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-\frac {(b n) \int \left (-\frac {2 d^{3/2} \sqrt {d+e x}}{x^3}+\frac {3 \sqrt {d} e \sqrt {d+e x}}{x^2}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{x}\right ) \, dx}{4 d^{5/2}} \\ & = -\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}+\frac {(b n) \int \frac {\sqrt {d+e x}}{x^3} \, dx}{2 d}-\frac {(3 b e n) \int \frac {\sqrt {d+e x}}{x^2} \, dx}{4 d^2}+\frac {\left (3 b e^2 n\right ) \int \frac {\tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{x} \, dx}{4 d^{5/2}} \\ & = -\frac {b n \sqrt {d+e x}}{4 d x^2}+\frac {3 b e n \sqrt {d+e x}}{4 d^2 x}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}+\frac {(b e n) \int \frac {1}{x^2 \sqrt {d+e x}} \, dx}{8 d}+\frac {\left (3 b e^2 n\right ) \text {Subst}\left (\int \frac {x \tanh ^{-1}\left (\frac {x}{\sqrt {d}}\right )}{-d+x^2} \, dx,x,\sqrt {d+e x}\right )}{2 d^{5/2}}-\frac {\left (3 b e^2 n\right ) \int \frac {1}{x \sqrt {d+e x}} \, dx}{8 d^2} \\ & = -\frac {b n \sqrt {d+e x}}{4 d x^2}+\frac {5 b e n \sqrt {d+e x}}{8 d^2 x}+\frac {3 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2}{4 d^{5/2}}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-\frac {(3 b e n) \text {Subst}\left (\int \frac {1}{-\frac {d}{e}+\frac {x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{4 d^2}-\frac {\left (3 b e^2 n\right ) \text {Subst}\left (\int \frac {\tanh ^{-1}\left (\frac {x}{\sqrt {d}}\right )}{1-\frac {x}{\sqrt {d}}} \, dx,x,\sqrt {d+e x}\right )}{2 d^3}-\frac {\left (b e^2 n\right ) \int \frac {1}{x \sqrt {d+e x}} \, dx}{16 d^2} \\ & = -\frac {b n \sqrt {d+e x}}{4 d x^2}+\frac {5 b e n \sqrt {d+e x}}{8 d^2 x}+\frac {3 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{4 d^{5/2}}+\frac {3 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2}{4 d^{5/2}}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-\frac {3 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{2 d^{5/2}}-\frac {(b e n) \text {Subst}\left (\int \frac {1}{-\frac {d}{e}+\frac {x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{8 d^2}+\frac {\left (3 b e^2 n\right ) \text {Subst}\left (\int \frac {\log \left (\frac {2}{1-\frac {x}{\sqrt {d}}}\right )}{1-\frac {x^2}{d}} \, dx,x,\sqrt {d+e x}\right )}{2 d^3} \\ & = -\frac {b n \sqrt {d+e x}}{4 d x^2}+\frac {5 b e n \sqrt {d+e x}}{8 d^2 x}+\frac {7 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{8 d^{5/2}}+\frac {3 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2}{4 d^{5/2}}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-\frac {3 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{2 d^{5/2}}-\frac {\left (3 b e^2 n\right ) \text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1-\frac {\sqrt {d+e x}}{\sqrt {d}}}\right )}{2 d^{5/2}} \\ & = -\frac {b n \sqrt {d+e x}}{4 d x^2}+\frac {5 b e n \sqrt {d+e x}}{8 d^2 x}+\frac {7 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{8 d^{5/2}}+\frac {3 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2}{4 d^{5/2}}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-\frac {3 b e^2 n \tanh ^{-1}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{2 d^{5/2}}-\frac {3 b e^2 n \text {Li}_2\left (1-\frac {2}{1-\frac {\sqrt {d+e x}}{\sqrt {d}}}\right )}{4 d^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 501, normalized size of antiderivative = 1.65 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\frac {-8 a d^{3/2} \sqrt {d+e x}-4 b d^{3/2} n \sqrt {d+e x}+12 a \sqrt {d} e x \sqrt {d+e x}+10 b \sqrt {d} e n x \sqrt {d+e x}+14 b e^2 n x^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )-8 b d^{3/2} \sqrt {d+e x} \log \left (c x^n\right )+12 b \sqrt {d} e x \sqrt {d+e x} \log \left (c x^n\right )+6 a e^2 x^2 \log \left (\sqrt {d}-\sqrt {d+e x}\right )+6 b e^2 x^2 \log \left (c x^n\right ) \log \left (\sqrt {d}-\sqrt {d+e x}\right )-3 b e^2 n x^2 \log ^2\left (\sqrt {d}-\sqrt {d+e x}\right )-6 a e^2 x^2 \log \left (\sqrt {d}+\sqrt {d+e x}\right )-6 b e^2 x^2 \log \left (c x^n\right ) \log \left (\sqrt {d}+\sqrt {d+e x}\right )+3 b e^2 n x^2 \log ^2\left (\sqrt {d}+\sqrt {d+e x}\right )+6 b e^2 n x^2 \log \left (\sqrt {d}+\sqrt {d+e x}\right ) \log \left (\frac {1}{2}-\frac {\sqrt {d+e x}}{2 \sqrt {d}}\right )-6 b e^2 n x^2 \log \left (\sqrt {d}-\sqrt {d+e x}\right ) \log \left (\frac {1}{2} \left (1+\frac {\sqrt {d+e x}}{\sqrt {d}}\right )\right )-6 b e^2 n x^2 \operatorname {PolyLog}\left (2,\frac {1}{2}-\frac {\sqrt {d+e x}}{2 \sqrt {d}}\right )+6 b e^2 n x^2 \operatorname {PolyLog}\left (2,\frac {1}{2} \left (1+\frac {\sqrt {d+e x}}{\sqrt {d}}\right )\right )}{16 d^{5/2} x^2} \]

[In]

Integrate[(a + b*Log[c*x^n])/(x^3*Sqrt[d + e*x]),x]

[Out]

(-8*a*d^(3/2)*Sqrt[d + e*x] - 4*b*d^(3/2)*n*Sqrt[d + e*x] + 12*a*Sqrt[d]*e*x*Sqrt[d + e*x] + 10*b*Sqrt[d]*e*n*
x*Sqrt[d + e*x] + 14*b*e^2*n*x^2*ArcTanh[Sqrt[d + e*x]/Sqrt[d]] - 8*b*d^(3/2)*Sqrt[d + e*x]*Log[c*x^n] + 12*b*
Sqrt[d]*e*x*Sqrt[d + e*x]*Log[c*x^n] + 6*a*e^2*x^2*Log[Sqrt[d] - Sqrt[d + e*x]] + 6*b*e^2*x^2*Log[c*x^n]*Log[S
qrt[d] - Sqrt[d + e*x]] - 3*b*e^2*n*x^2*Log[Sqrt[d] - Sqrt[d + e*x]]^2 - 6*a*e^2*x^2*Log[Sqrt[d] + Sqrt[d + e*
x]] - 6*b*e^2*x^2*Log[c*x^n]*Log[Sqrt[d] + Sqrt[d + e*x]] + 3*b*e^2*n*x^2*Log[Sqrt[d] + Sqrt[d + e*x]]^2 + 6*b
*e^2*n*x^2*Log[Sqrt[d] + Sqrt[d + e*x]]*Log[1/2 - Sqrt[d + e*x]/(2*Sqrt[d])] - 6*b*e^2*n*x^2*Log[Sqrt[d] - Sqr
t[d + e*x]]*Log[(1 + Sqrt[d + e*x]/Sqrt[d])/2] - 6*b*e^2*n*x^2*PolyLog[2, 1/2 - Sqrt[d + e*x]/(2*Sqrt[d])] + 6
*b*e^2*n*x^2*PolyLog[2, (1 + Sqrt[d + e*x]/Sqrt[d])/2])/(16*d^(5/2)*x^2)

Maple [F]

\[\int \frac {a +b \ln \left (c \,x^{n}\right )}{x^{3} \sqrt {e x +d}}d x\]

[In]

int((a+b*ln(c*x^n))/x^3/(e*x+d)^(1/2),x)

[Out]

int((a+b*ln(c*x^n))/x^3/(e*x+d)^(1/2),x)

Fricas [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{\sqrt {e x + d} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

integral((sqrt(e*x + d)*b*log(c*x^n) + sqrt(e*x + d)*a)/(e*x^4 + d*x^3), x)

Sympy [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int \frac {a + b \log {\left (c x^{n} \right )}}{x^{3} \sqrt {d + e x}}\, dx \]

[In]

integrate((a+b*ln(c*x**n))/x**3/(e*x+d)**(1/2),x)

[Out]

Integral((a + b*log(c*x**n))/(x**3*sqrt(d + e*x)), x)

Maxima [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{\sqrt {e x + d} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

1/8*a*(3*e^2*log((sqrt(e*x + d) - sqrt(d))/(sqrt(e*x + d) + sqrt(d)))/d^(5/2) + 2*(3*(e*x + d)^(3/2)*e^2 - 5*s
qrt(e*x + d)*d*e^2)/((e*x + d)^2*d^2 - 2*(e*x + d)*d^3 + d^4)) + b*integrate((log(c) + log(x^n))/(sqrt(e*x + d
)*x^3), x)

Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{\sqrt {e x + d} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)/(sqrt(e*x + d)*x^3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{x^3\,\sqrt {d+e\,x}} \,d x \]

[In]

int((a + b*log(c*x^n))/(x^3*(d + e*x)^(1/2)),x)

[Out]

int((a + b*log(c*x^n))/(x^3*(d + e*x)^(1/2)), x)